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The buoyancy-driven motion of bubbles or drops towards a liquid-liquid interface at  
small and moderate Reynolds numbers is studied. Solutions of the unsteady 
nonlinear mathematical problem are performed by means of a general finite-element 
technique of Lagrangian type. Data for the development of the interface shapes and 
the film thickness are presented, and comparisons with previous theories and 
experiments are performed, supporting the reliability of our results. Two interesting 
phenomena are observed: a transient concavity at  the bottom of the particle and 
particle elongation in the direction of motion. The drainage of the film formed 
between the particle and the interface, and the tailing mode are studied. Occurrence 
of a transient surface wave at  the liquid-liquid interface and a toroidal dimpling in 
the film zone are observed in the tailing mode. 

1. Introduction 
The dynamics of fluid particles rising through an immiscible fluid toward a 

deformable liquid-liquid interface due to buoyancy is important in several chemical 
engineering processes. To understand these processes it is useful to study the motion 
of a single particle moving toward an initially flat fluid-fluid interface. This problem 
has been studied both experimentally and theoretically under various restrictions in 
many works, some of which will be briefly reviewed below. 

Let fluid 1 contain a bubble or a drop of fluid 2, rising towards the interface 
between fluids 1 and 3. Three different cases are identified in the literature depending 
on the properties of the fluids: (i) fluid 2 and fluid 3 are identical (coalescence 
problem); (ii) the fluids are distinct but miscible; (iii) the fluids are distinct and 
immiscible. 

In general, three steps of this process can be distinguished : ( a )  remote interaction 
of the particle with the fluid-fluid interface ; ( b )  close-range interaction of the particle 
with the interface. In  this stage, a liquid film is formed at  the front part of the 
particle. At large times a tail, due to the deep penetration of the particle into the 
upper liquid, can appear ; (c) rupture of the film or the tail, and formation of new 
structure. 

In the present paper we shall consider stages (a )  and (b )  of the process for cases 
(i) and (iii). 

The initial stage (a)  of the process has been studied theoretically only in the 
context of low-Reynolds-number flow, based on knowledge of the fundamental 
solution of the Stokes equations and the formulation of the problem in terms of an 
integral equation. Chi & Leal (1989) studied the initial phase of the coalescence of a 
deformable drop with a bulk fluid. They restricted their attention to the case of small 
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inertia (Reynolds number $3 < l), and examined the influence of the capillary 
number and viscosity ratio on the interface and drop shapes, as well as on the film 
profile. The motion of a rigid spherical particle toward an initially flat deformable 
interface was studied by Geller, Lee & Leal (1986), using the same approach. In 
recent years, such numerical methods of boundary-integral type have been 
intensively used in free-surface hydrodynamics and especially in problems connected 
with deformable particles. They yield many interesting results even for direct study 
of the particle stability - see e.g. Pozrikidis (1990). 

The above-mentioned investigations cover the close-range interaction too but they 
do not yield theory for the drainage of the hydrodynamical film. This needs 
development of special methods including coupling of large- and small-scale models 
(i.e. for the particle and the deformed interface and for the film or tail zone). 

The studies of the small-distance interaction are concentrated mainly on the film 
drainage and only the two interfaces are considered, with some boundary conditions 
at the film ends, with a fair approach to accuracy. Many theoretical investigations 
are based on the lubrication theory - Hartland (1969) ; Riolo, Reed & Hartland 
(1975) ; Jones & Wilson (1978). This approach requires knowledge of the initial film 
shape. Hartland (1969) determines it using experimental observation. Princen (1963) 
and Jones & Wilson (1978) determine the initial film profile from the static force 
balance, assuming that the configuration is in a quasi-static equilibrium and 
neglecting the influence of the film drainage. However, such an equilibrium does not 
exist in some cases, e.g. when a so-called ‘tail’ configuration appears, and this 
assumption is irrelevant. Then the film analysis has to be connected with the overall 
particle shape and the flow in the other part of the domain. 

Many experimental studies are devoted to the motion of a drop toward a 
fluid-fluid interface and coalescence (MacKay & Mason 1963; Princen & Mason 1965; 
Hartland 1967a+, 1968, 1969), which is connected with its apparent importance. 
They provide data for the shape of the drop and the interface, modes and rate of film 
drainage. 

An experimental study of a liquid drop passing through a liquid-liquid interface 
has been reported by Shan, Wasan & Kintner (1972), where the behaviour of a drop 
at  a pure interface has been compared with that a t  an impure interface. 

In general, the final stage of the interaction of a particle with a fluid-fluid interface 
is well studied. However, these investigations do not yield the complete picture of the 
process. The final stage of the interaction of the particle with the interface depends 
on the earlier stage and these relations are not analysed completely. Usually, the 
initial film shape is determined from the static force balance, neglecting the inertial 
and viscous forces. Furthermore, almost all of the preceding theories have analysed 
film drainage with either zero tangential stress or no-slip conditions at  both 
interfaces of the film. So it is difficult to assess the influence of the physical properties 
of the fluids beyond the boundaries of the film. 

In this study, we present computations for the motion of a fluid particle (bubble 
or drop) towards a liquid-liquid interface at low and intermediate Reynolds 
numbers. The Reynolds number is increased until instabilities appear. The numerical 
solution is based on the unsteady Navier-Stokes equations with force balance 
boundary conditions on the interfaces, and all transient, nonlinear and free-surface 
effects are included under no additional restrictions. We assume that the problem is 
axisymmetric which is consistent provided that the initial condition is axisymmetric. 
To obtain the solution of this problem we employ a finite-element technique in 
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conjunction with a Lagrangian approach for the time integration. The numerical 
method is described in Shopov (1990). 

This technique has been successfully used by Shopov et al. (1990) for studying the 
interaction of a gas bubble with a rigid wall. In this paper a large number of test 
examples and comparisons with the other authors are presented which validate the 
accuracy of this technique for free-boundary problems. The present work is a 
continuation of these investigations. Preliminary information about it is included in 
Minev ( 1990). 

In the present study the shapes of the particle and the interface, as well as the flow 
pattern, are obtained as a function of time. The film profile and velocity distribution 
in it are calculated for a small-distance interaction. The influence of the 
hydrodynamical parameters is studied. Our theory is compared with the results of 
Chi & Leal (1989) and Hartland (1969) as well as with results of Jones & Wilson 
(1978) for the film drainage rate. We consider here only interfacial, viscous, inertial 
and gravitational forces. Our investigations do not concern thin films, and the 
London-Van der Waals forces are not included in our model. Moreover, the 
numerical technique is not applicable to the case of coalescence of a gas bubble with 
a gas bulk phase. 

In the next section, the mathematical model is described, with brief information 
about the procedure for the numerical integration. In the third section the numerical 
results are presented. The last section contains conclusions drawn from the present 
study and related discussions. 

2. Mathematical formulation and solution methodology 
We consider a drop or a bubble of a relatively lighter fluid 2 (i.e. p2 < p l )  rising 

through an immiscible ambient fluid 1 under buoyancy toward an initially flat 
interface (see figure 1) which separates fluid 1 from an upper lighter bulk fluid 3 (i.e. 
p1 > p3). All liquids involved are homogeneous, incompressible, Newtonian, with 
constant viscosities pi and densities pi. Furthermore, the fluid-fluid interfaces are 
pure and characterized by constant interfacial tensions, denoted by u12 and uI3 
respectively. 

We choose as a reference length the radius of the volume-equivalent sphere 

2 = (3V/4~):, (1) 
where V is the volume of the particle. A characteristic velocity is chosen to be the 
terminal Stokes velocity U, of a rigid sphere of the same density and volume, 

where g is the acceleration due to gravity. The computations show that this is an 
appropriate choice because the maximum of the actual velocity is indeed O(1). The 
characteristic time and pressure are respectively U,/Z and p1 q. This reference set 
yields the following set of dimensionless governing parameters : the Reynolds and 
Eotvos numbers, 

the ratios of the viscosities, surface tensions and densities 

= Pz/Pi? = t%/Pi? Y = fJ i3 / fJ i2 ,  ’% = pz/Pi, s3 = P3/pi; (4) 
5 - 2  
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FIGURE 1 .  Initial configuration of the particle and the interface. 

and a geometrical parameter, namely the dimensionless initial distance between the 
centre of the particle and the interface (see figure 1) 

d = d ( 0 )  = H/Z. (5 )  

The Weber, Froude and capillary numbers are functions of the above set of 
parameters : 

The motion of the ith liquid (i = 1 , 2 , 3 )  is described by the dimensionless 
Navier-Stokes equations : 

where I is the unit tensor, Fi) = p i 9 / ( p 1 - p z )  is the vector of the body force, and 

If the phase i is a gas, the pressure inside this phase depends only on time, i.e. 
A,  = 8, = 1. 

p(i)  = p,(t) (11) 

( d t ) l + O  when IxI+ co (12) 

The boundary condition at infinity is 

The kinematic condition at the liquid-liquid interfaces is the continuity of the 
velocity 

d')Ir, = V"lr,. (13) 
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The dynamic condition is: 

where ui, is the surface tension on ri,, R, and R, are the principle radii of curvature 
off,, en is the outward unit normal to f ,  for ith phase. If the ith phase is a gas then 

f i '  = p,(t)/,  (15) 

If r,  is described by the equation S,(x, t )  = 0, then the free-surface shape can be 
determined from the standard kinematic condition : 

There are many possibilities for the choice of the initial conditions for this 
problem. Usually the particle is assumed to be spherical and at  rest in quiescent 
liquid and the interface to'be flat at the initial instant. This is a natural initial 
condition but is often violated in practice. So we also consider numerical examples 
with two other initial conditions : an elongated particle at  rest, and the steady-state 
shape and the velocity field for the same particle in unbounded ambient liquid - see 
Dandy & Leal (1989). 

A general finite-element technique of Shopov (1990) is used to solve this problem, 
see also Bach & Villadsen (1984), Keunings (1986). The finite elements are 
isoparametric with a 9-node quadratic approximation for the velocity and a linear 
approximation for the pressure -see Engelman et al. (1982). As the equations are 
unsteady, the Lagrangian approach is used for time integration. The mesh cells 
represent finite volumes of the liquid moving with the flow. When they become 
intolerably stretched, a regridding is performed. A general procedure of grid 
redefinition is developed which allows us to change the number of finite elements, as 
well as the topology of the mesh. 

To compute the evolution of the fluid-fluid boundaries, a predictor-corrector 
procedure is used. In order to minimize the computational time an adaptive method 
for automatic adjustment of the time step is developed. We require that the 
maximum of the difference between the predicted and corrected position of the 
interfaces at each time step is less than a pre-established maximum. If this criterion 
is satisfied the time increment can be increased; if not, we decrease it and repeat the 
current step. A gross measure B for the accuracy is taken usually to be about 1 YO of 
the unit length multiplied by the actual time integration step. So if this accuracy 
cannot be assured, then the time integration stops. This is why the method is unable 
to give information for the last stage of close-range interaction : because of the mesh 
degeneration in the film zone. We incorporate in our numerical scheme a spline 
procedure for filtrating the error in the computed values of the velocity of the 
interfaces. More information about the numerical technique can be found in Shopov 

A number of tests and comparisons with other theoretical and experimental results 
for free-boundary problems are presented in Shopov et al. (1990), with reliability 
tests of this method included. In  order to provide further corroborative results we 
present in $ 3  a direct comparison with the study of Chi 6 Leal (1989) of the slow 
motion of a drop towards a liquid-liquid interface, which is based on a boundary- 
integral method. 

(1990). 
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Good adaptivity of this method to  different problems is its virtue, as well as the 
possibility of considering many liquids and interfaces. This is possible due to  the 
usage of a discontinuous pressure approximation, which also yields very good results 
for flows in fixed domains - see e.g. Cliffe & Lever (1986). The method works well for 
problems in which the particle rims are quite sharp as presented in figures 5 and 7. 
This seems to be more difficult for the methods based on a transformation of the 
physical domain to  a fixed computational one - see e.g. Dandy & Leal (1989). 

3. Results 
As mentioned in the introduction, we focus our attention on the intermediate- and 

small-distance interaction stages but only for relatively large film thickness. The 
solution procedure does not work very well when the film becomes very thin. Then 
the lengthscales inside and outside the film are too different and so, to  achieve a good 
accuracy in the both regions, a large number of finite elements is required which is 
not possible because of the capabilities of the computers we have used. The lowest 
film thickness attained in our experiments is about 0.011 with respect to the particle 
equivalent radius (1) .  Chi & Leal (1989) met with similar difficulties and stopped 
their computations when the thickness of the film became less than 0.02 of the 
undeformed particle radius. 

3.1. Bubble approaching a liquid-liquid interface 

In  this case fluid 2 is a gas and the system (7)-( 10) is reduced to equations for liquids 
1 and 3 only. Then for convenience we take h = A, and S = 8,. 

First, we consider a bubble rising under buoyancy to  a deformable interface at 
intermediate Reynolds number, B? = 2. The starting distance is moderate, d = 1.5, 
and the interaction of the bubble with the interface begins before it achieves its 
terminal velocity in an unbounded liquid. Bubble flattening and interface bulging 
develop as a result of the interaction, see figure 2. At the last instant presented in 
figure 2 the interfaces are close to a quasi-static equilibrium. The film between them 
drains uniformly and the calculations are stopped when its thickness reach 0.015 of 
the undeformed bubble radius. The shape of the film is hemispherical with 
dimensionless radius of curvature about 1.1. The angle 0 between the axis of 
symmetry and the line connecting the centre of curvature and the edge of the film 
is about 70". Since the inertial effects are moderate, a qualitative comparison with 
the low-Reynolds-number theory of Chi & Leal (1989) is appropriate. In  all their 
results at h = 0.1 a 'rapid drainage' occurs and the film thickness increases 
monotonically as r increases. In  the present case h = 0.333 and the profile is uniform. 
However, the rate of drainage is relatively high in comparison with the numerical 
examples with larger viscosity ratio h - see figure 8. A ln-ln plot of the film thickness 
a t  the centreline, H,,,, as a function of t  is presented in figure 3 (a) .  The film-drainage 
analysis of Jones & Wilson (1978) predicts that  the film thickness should decrease 
asymptotically at a rate proportional to  t-b for a film between two free surfaces. In 
order to compare our result with this theory we evaluate numerically the derivative 
d(lnH,,,(lnt))/d(lnt) in the time interval 4.25 < t < 5.12 (the calculations are 
stopped a t  t =  5.12). Its  value is 0.3, which differs by about 10% from the 
asymptotic prediction of Jones & Wilson. So we can expect a good asymptotic 
agreement of the rate of drainage. However, we cannot make a stronger statement 
from the numerical data available. 

In this case, as well as in most of the computations presented below, we assume 
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FIGURE 2. Bubble rising towards a liquid-liquid interface, R = 2, d = 2, A = 0.333, y = 0.4, 
, 9 = 0 . 2 , d = 1 . 5 :  -.-.-.- t = o . - - - -  t=2 .8 . - - -  , t = 5.1. 
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FIQURE 3. Graph of dimensionless film thickness at the centreline: (a) lnHeen, 
( b )  H,,, for the experiment in figure 2. 

In I r 

that the particle is released from a nozzle close to the bulk interface and its initial 
shape is spherical. The last assumption is reasonable for most low-Morton-number 
systems, but can be significantly in error if A is large (see Clift, Grace & Weber 1978). 
In  such a case the initial shape of the particle is usually elongated. In order to verify 
the dependence of our results on the initial shape of the particle we carry out 
computations with an initially elongated bubble at the same parameters as in the 
case discussed above. The evolution of the interfaces is presented in figure 4. As one 
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FIGURE 4. Bubble rising towards a liquid-liquid interface, 9 = 2, d = 2, A = 0.333, y = 0.4, 
8 = 0.2, d = 1.5, elongated initial shape: -.---, t = 0 ;  ----, t = 1.6; -, t = 3.3. 

can see the bubble deforms fast under the action of surface tension and inertia and 
for t x 0.7 it is nearly spherical. For t > 1 the interface shapes in both cases are nearly 
the same. The quasi-static state and the film profile also do not differ significantly. 

Hence the variation in the initial shape of the particle influences the process only 
for a small time period, and results obtained under the assumption of a spherical 
initial particle shape can be also used in other cases. 

Next, we consider a case where the upper liquid is considerably less viscous than 
the bulk one. In  this case a new hydrodynamic effect takes place - the elongation of 
the bubble in the close-range interaction phase of the process, see figure 5 .  To show 
this effect in a clear form we present here an experiment for small Reynolds and 
Weber numbers, W = 0.039; W = 0.0275. It is well known that for these values of 
the governing parameters the bubble remains spherical in unbounded liquid (see the 
experiments of Bhaga & Weber 1981, the theory of Taylor & Acrivos 1964 and 
numerical experiments of Shopov et al. 1990) and any variation in shape is purely due 
to the presence of the interface. 

The evolution of both interfaces in the case where the upper liquid is a hundred 
times less viscous than the bulk one is shown in figure 5 .  As expected, the bubble 
remains spherical for small times (i.e. about t < 0.1). The interaction of the particle 
with the interface begins when the distance between them is comparatively large, 
d ( t )  = 1.49, t = 0.01. One reason is the well known fact that the zone of the disturbance 
in front of the particle is larger for greater viscosity. The small surface tension on the 
liquid-liquid interface and the low viscosity of the upper liquid result in resistance 
a t  the front part of the particle that is lower than that at  its rear remaining in the 
viscous bulk. Hence, when the particle approaches the interface, gravity dominates 
the dynamics of the front part ; the viscous tension is dominant at the rear, causing 
its lag. Although the deformability of the gas-liquid interface is small (8 = 2.13; 
W = 0.0275), the elongation of the particle in the direction of the motion is 
considerable and reaches 25 % at the end of the simulation presented in figure 5. The 
velocity of the fore point of the particle is steadily greater than the velocity of the 
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FIGURE 5. Motion of a bubble towards a liquid-liquid interface, W = 0.039, d = 2.16, h = 0.0039, 
= 0.00275, 6 = 0.9, d = 1.5: -.-.-.- , t = 0.01; ----, t = 1.2; -, t = 1.6. 

rear one (e.g. for the last shape in figure 5 the ratio between them is 2.6). A similar 
effect of particle elongation was observed in the experiment of Shan et al. (1972) when 
a water drop passes through an interface between DC 200 and cyclohexanol. 

The film drainage mode is ‘rapid’. Chi & Leal (1989) have predicted such a film 
profile in the case of coalescence of a drop at  low W if h < 1. In our case one of the 
film interfaces is free (zero tangential stress), and h = 0.0039 which means that 
tangential stress on the other one is very small. So the rapid drainage is in agreement 
with the prediction of Chi & Leal. The calculations are stopped when the film 
thickness If,,,, is about 0.012. The penetration of the particle into the upper liquid 
is now much deeper than in the previous case owing to the considerably higher 
deformability of the liquid-liquid interface. For the same reason, the final shape is far 
from being quasi-static, but we have to stop the simulation because of the small 
thickness of the film. 

In order to study the influence of the initial velocity field, another experiment is 
carried out at the same parameters, but with a different initial condition for the 
velocity. The bubble terminal shape in an unbounded liquid (it is spherical in this 
case) and the corresponding velocity field are used as initial conditions, which 
corresponds to the case of large starting distance d.  These conditions are prescribed 
when the particle is three equivalent radii away from the interface. The consistency 
of this is supported by the fact that the bubble shape remains unchanged for small 
times - see figure 6. The effect of elongation is preserved and is more clearly seen, as 
compared to the previous experiment with moderate starting distance. The 
elongation of the bubble at the last instant in figure 6 is about 50% of the 
undeformed bubble radius. The penetration of the particle in this case is greater than 
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FIGURE 6. Interaction of a bubble at terminal velocity for unbounded liquid with the liquid-liquid 
interface, W = 0.039, d = 2.16, A = 0.0039, y = 0.00275, 6 = 0.9, d = 1.5: -.-.-, t = 0; ----, 
t = 2.7; --, t = 4.6. 

in the previous one, owing to the considerable inertia of the particle. At  t x 4 its rear 
edge begin to sharpen. A similar effect was observed in the experiment of Shan et at. 
(1978) mentioned above. 

In order to outline the possible inertial effects in this problem, we present in figure 
7 a numerical simulation at a larger Reynolds number, W = 60, while preserving the 
starting distance the same as that in experiments, given in figures 4 and 5. In  
addition, we take the upper liquid to be more viscous than the bulk one, h = 3, in 
order to study the influence of this important parameter on the film shape. The 
deformability of both interfaces is quite high, W = 260, 8‘ = 20, and the same, i.e. 
y = 1. The densities ratio is moderate ; 6 = 0.5, i.e. the bulk liquid is two times heavier 
than the upper one. 

Initially, up to t = 1.6 (H,,, = 0.4) the bubble retains its spherical shape, which is 
much longer than in the previously presented cases. It corroborates our argument 
that the size of the zone in front of the particle where the liquid is disturbed decreases 
with increasing the Reynolds number. 

When the interaction between the bubble and the interface becomes strong (in this 
case when t > 3;  H,,, < 0.32), an inertial concavity in the rear of the bubble appears. 
This is due both to the action of the inertial force of the liquid behind the bubble and 
the resistance of the liquid-liquid interface. This effect was observed by Shopov et al. 
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FIQURE 7. Motion of a bubble towards a liquid-liquid interface, 9 = 60, 8 = 19.5, h = 3, y = 1, 
6 = 0.5, d = 1.5: -.-*-, t = 1.6; ----, t = 3.6; -, t = 15.5. 

(1990) for the same problem but with a liquid-rigid wall interface. A t  the same time, 
considerable overall flattening of the particle and bulging of the liquid-liquid 
interface take place, as in the first experiment presented. 

After a time (approximately for t > 5) the surface tension at the rear becomes 
dominant. It acts to reduce the concavity and thus causes a surface wave, which can 
be observed in the last two shapes on figure 7. The wave amplitude decreases quickly 
and a t  t = 15.5 the shape configuration is nearly quasi-static. At t x 11 a dimple is 
formed at  the fore part of the bubble. Its amplitude is modest but it is clearly seen 
in the numerical data and can be observed at  the last shape in figure 7. This effect 
is due to the higher viscosity of fluid 3 (see figure l) ,  which results in the growth of 
the tangential stress on TI, with respect to the two previous examples. This 
behaviour is again in agreement with the theory of Chi & Leal (1989), which predicts 
the occurrence of the dimpling if h >> 1. Their results are obtained for the quasi- 
static, Stokes flow case. It is interesting to note that the viscosity ratio remains the 
most important factor for the dimpling formation for intermediate Reynolds 
numbers also. Of course, the influence of the particle velocity at the moment of film 
formation is also important (see Shopov et al. 1990), and in the case considered the 
presence of inertial terms contributes to the dimpling formation as well. 

Comparisons with the results of Shopov et al. (1990) for the same problem but with 
liquid-rigid wall interface show that, apparently, the dimpling effect is less strong for 
liquid-liquid interfaces. In the latter case, the film shapes are significantly closer to 
hemispherical and the film thickness always grows in the region near its ends. If 
dimpling is present, then the point where the film thickness is minimal is located 
much nearer to the central line than in case of interaction with a rigid interface. 

As we expected, the average rate of 'dimple' drainage in this experiment is lower 
than the rate of uniform drainage, comparing the graphics of the film thickness in 
figures 3 ( b )  and 8. 
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FIGURE 8. Dimensionless film thickness at the centreline H,,,(t) (-) and at the rims H,,,,,(t) 
(-.-.-. ) for 9 = 60, 8 = 19.5, A = 3 (bubble towards a liquid-liquid interface) ; ----, H,,,(t) for 
W = 2, 8 = 5 ,  h = 0.33 (coalescence of a drop). 
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FIGURE 9. Motion of a bubble towards a liquid-liquid interface, W = 88, 8 = 19.8, h = 2, 

-2 - 1  0 1 2 

y = 20, 8 = 0.5, d = 1.5: -, t = 2.4; -.-*-, t = 4.4; ----, t = 10.8; -, t = 17.1. 

Another effect presented a t  large Eotvos and Reynolds numbers is the sharpening 
of the rims of the bubble in the small-distance interaction stage. It can be observed 
for the motion of a bubble in a spherical container (see Shopov et al. 1990), where the 
film shape is again hemispherical. 

Finally, in figure 9 we present computations performed to give an idea of when an 
instability of the bubble surface due to interaction with the interface takes place. The 
Reynolds and Weber numbers are relatively large: 9 = 88, W = 387 (8 = 20). The 
inertial concavity at the bubble rear is much greater now, see figures 7 and 9. The 
surface wave, which develops under the action of the surface tension, causes an 
instability on the bubble boundary. In the numerical experiment this yields self- 
crossing of the free boundary, which can be observed in the last position on figure 9. 
A related situation is observed in experiments mentioned by Harlow & Shannon 
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FIGURE 10. Comparison of the results for the motion of a drop towards a liquid-liquid interface : 
(a )  Chi & Leal (1989), W = 1.0, A = 0.02; ( b )  Hartland (1969), %? = 1.037, A = 0.021 ; (c) present 
results for 9 = 0.0021, 6 = 3.14, A = 0.021, y = 1 ,  6 = 0.5, d = 3 :  -.-.-, t = 1.2; ----, t = 2.3; 
-, t = 5.1. 

(1967) in the case of a liquid drop interacting with a gas-liquid surface in gas bulk. 
On the photographs the inertial indentation is very clearly visible and the drop rim 
sharpens, owing to the interaction with the interface. Naturally, a t  the last moment 
an instability in the angular direction develops and small drops separate from the 
particle. This process is fully three-dimensional, and is not included in our 
axisymmetric simulation. 

3.2. A drop approaching a liquid-liquid interface 
First, we shall consider the case of coalescence, for which a connection between the 
governing parameters holds : 

A = A, = A,, 6 = s, = s,, y = 1.  (17) 

For this case the low-Reynolds-number theory of Chi & Leal (1989) applies and we 
shall compare our computations with it. Chi & Leal have employed a quasi-steady 
approach, which permits to  the shapes of the liquid-liquid interfaces to be followed 
in terms of the distance between them. They present a comparison of the numerical 
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FIQURE 11. Motion of a drop towards a liquid-liquid interface (coalescence), W = 2, 8 = 5, 
A = 0.333, = 1, S = 0.2, d = 1.5: -.---, t = 2.5; ----, t = 5.9; __ , t = 14.7. 

shapes for W = 1 and A = 0.02 with the experimental observations of Hartland (1969) 
for V = 1.037, A = 0.021 and these results are shown in figure 10 (a,  b ) .  Our results for 
the evolution of the interface shapes at a small Reynolds number (93 = O . l ) ,  6 = 0.5, 
and the same values of the capillary number W = 1.037, viscosity ratio h = 0.021, 
and the body force parameter (see Chi & Leal) Cg = 0.00069 are presented in figure 
lO(c). The qualitative coincidence of all the results is evident. 

A measure for quantitative comparison is the ratio hlw of the horizontal and 
vertical size of the terminal, quasi-static shape of the particle. It is equal to 1.5 in the 
results of Chi & Leal (1989) and in ours. In the experiment of Hartland (1969) 
h/w = 1.3. The film in all the three results is of uniform thickness. The quasi-static 
equilibrium is reached in our experiment for t = 5.8. 

In  order to investigate the influence of the internal circulation in the drop on the 
film drainage, calculations (see figure 11) are carried out for coalescence of the same 
two liquids as in the experiment with a bubble in figure 2. For a bubble the viscosity 
ratio A, = 0, but now the fluid inside the drop is identical with the lighter bulk fluid 
3 with A = 4. The other parameters are kept fixed: W = 2, W = 2.2, 6 = 0.2, d = 1.5, 
which means that the Eotvos number on the particleliquid interface is larger now. 
Because of this the particle in figure 11 appears to  be more deformed now in 
comparison with case in figure 2. 

The film drains uniformly. Its shape is hemispherical and in the final moment 
presented its radius is 1.5 and angle 8 (see $3.1) is about 45". The graph of the film 
thickness H,,,(t) is shown in figure 8. It decreases linearly up to t x 13.2 and its slope 
is approximately 7.5". For t > 13.2 the slope is smaller. In comparison with the graph 
in figure 3(b) the film thickness H,,,(t) decreases more slowly. So we can conclude 
that the increase of the viscosity ratio and hence of the tangential stress a t  one side 
of the film strongly decreases the rate of drainage. 

In order to study the influence of the Reynolds and Eotvos numbers on the process 
of coalescence two experiments are carried out. First we fix 9 = 2, h = 0.333 and 
S = 0.2 as the previous experiment and increase the Eotvos number to 8 = 20. The 
evolution of the fluid-fluid interface is shown in figure 12. As in the ease of a fluid 
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FIGURE 12. Motion of a drop towards a liquid-liquid interface (coalescence), W = 2 ,  d = 20, 
h = 0 . 3 3 3 , ~ =  l , S = 0 . 2 , d = i . 5 : - . - . - , t = 2 . 3 ; - - - - , t = 3 . 2 5 ; ~  , t = 7.9. 
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FIGURE 13. Motion of a drop towards a liquid-liquid interface (coalescence), W = 10, 8 = 5, 
A = O . 3 3 3 , ~ =  1,13=0.2,d=1.5:- . - . - , t= l ; - - - - , t=3 .1 ; -  , t = 7.6. 

particle rising toward a rigid wall (see Shopov et al. 1990) the increase of d leads to 
an incrcase of deformation of the particle. The surface tension is 5 times smaller than 
in the previous case and the inertial forces at the rear of the drop become dominant. 
They cause a considerable indentation in this zone. 

A similar situation takes place if we fix the values of 8 = 5, h = 0.333, 6 = 0.2 and 
increase the Reynolds number to W = 10 (see figure 13). Then the surface tension is 
not increased but the inertial forces are greater and thus they again cause an 
indentation in the rear of the particle. However, the profile of the film is not 
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FIGURE 14. Motion of a drop towards a liquid-liquid interface, W = 18, d = 1 ,  A, = 36, A, = 0.33, 
7 = 0.01, 8, = 0.1, 8, = 0.9, d = 3: -.-.- , t = 13.68; ----, t = 21.18; -, t = 25.63. 

influenced by these two parameters and the film drains uniformly in both cases, as 
in the case shown in figure 11.  These facts confirm that the most important 
parameter with respect to  the film drainage is viscosity ratio A. 

The so-called ‘tailing configuration ’ cannot occur in coalescence because the 
density of the particle bulk and of the upper liquid is the same. It would be possible 
if the three fluids were different and the density of the particle bulk were significantly 
lighter than that of the upper one. 

So we now turn our attention to this situation, taking the drop bulk to be ten times 
lighter than the ambient liquid, 6, = &, and nine times lighter than the upper one, 
S, = A. The deformability of the particle interface is modest, W = 4, d = 1, but y = 
0.01 and so the liquid-liquid interface is easily deformable. I n  this way the 
penetration of the particle through the interface is promoted. The ambient liquid is 
chosen to be not very viscous, 9 = 18, in order to permit the easy motion of the 
particle through it, and the upper one is taken to be three times less viscous, A, = 
0.33, for similar reasons. The liquid inside the particle is much more viscous than the 
ambient one, A, = 36 and its Reynolds number is 0.5. The starting distance is 
relatively large, d = 3, which allows the particle to gain enough velocity before the 
start of the interaction with the interface. 

As the Archimedean force is dominant, the drop penetrates into the upper liquid, 
deforming the interface and carrying with i t  a portion of liquid 1, see figure 14. The 
rate of film drainage is relatively slow owing to the high viscosity of the particle 
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liquid, and the displacement of the particle into the upper liquid is about 8.5 
equivalent radii. 

Similar tailing configurations are observed in the theoretical results of Geller et al. 
(1986) for low-Reynolds-number interaction of a rigid sphere with a liquid-liquid 
interface and in the experiment of Shan et al. (1972) for a water drop passing through 
the interface between cyclohexanol and DC 200. Both experiments are in good 
qualitative agreement with our result. Unfortunately the experiment of Shan et al. 
(1972) cannot be used for a quantitative comparison because the interface is very 
impure and we are unable to obtain values for the governing parameters. 

The particle shape remains nearly spherical until the small-distance interaction 
phase, when a slight flattening takes place. Its maximum is achieved at the moment 
when the particle begins to move the interface up. It is due to the reaction of the 
surface tension at the liquid-liquid interface. 

A surface wave is observed at the liquid-liquid interface at the moment of one- 
diameter penetration of the particle into the upper liquid. This effect is not purely 
viscous because it is clearly observed by Testle (1987) in the case of a rigid cylinder 
moving towards a gas-liquid interface with zero surface tension in ideal ambient 
liquid. In his figure 4 an indentation under the level of the undisturbed interface is 
observed for the same penetration depth. 

A bulge is observed in the liquid-liquid interface at the fore part of the particle at  
t > 20, followed by toroidal dimpling and a toroidal bulge - see figure 14. Similar 
effects have been observed in the experiments of Hartland (1968) for a rigid sphere 
sedimenting towards a liquid-liquid interface, and in the computations of Shopov 
et al. (1990) for a bubble approaching a spherical wall. All these results are simply 
explained by the influence of the additional hydrostatic pressure in the hemispherical 
film - see Hartland ( 1968). 

4. Conclusions and discussion 
The unsteady interaction of a fluid particle (drop or bubble) with a liquid-liquid 

interface for low and intermediate Reynolds number is studied in the present paper. 
The numerical method used allows us to investigate many inertial and transient 
effects which were not included in previous theories. The unsteady simulation yields 
information about the times of the appearance and disappearance of the 
hydrodynamic effects or their time stability, as well as data for the speed of the 
development of the processes. 

A comparison of drop and interface quasi-static shapes during the coalescence at  
W Q 1 with an experiment of Hartland (1969) and with the theory of Chi & Leal 
(1989) is presented. The three results are in a good agreement. The results obtained 
for the rate and modes of film drainage are also in agreement with the conclusions of 
Jones & Wilson (1978) and Chi & Leal (1989). 

The investigation of the intermediate-distance interaction phase shows the 
presence of a transient inertial concavity at the particle rear at intermediate or large 
Reynolds and Eotvos numbers. The amplitude of this concavity grows with the 
increase of these parameters. This effect is also present in the case of a rigid interface 
(Shopov et al. 1990), but is in the present case comparatively less pronounced. 

The overall flattening of the particle and bulging of the interface is a typical 
consequence of the interaction. But bubble elongation is also observed in this stage 
for a small viscosity of the upper liquid, a large viscosity of the lower one and a large 
deformability of the liquid-liquid interface. 
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The sharpening of the particle edges a t  the end of the intermediate-distance 
interaction stage is a typical large-Reynolds-number, large particle deformability 
effect. This effect was also observed by Shopov et al. (1990) in thc case of a rigid 
interface but is now clearer owing to the flexibility of the interface. After a time, 
when the influence of the inertia fades away, this effect diminishes. 

Two different modes of the close-range interaction of the particle and the interface 
are studied. These are film drainage and tailing modes, established in the 
investigation of Geller et al. (1986) in the case of rigid sphere motion towards a 
fluid-fluid interface and observed in the experiment of Shan et al. (1972) in the case 
of passage of a drop through a liquid-liquid interface. 

First, we consider the behaviour of bubbles and drops in the film drainage mode. 
Our results confirm the importance of the viscosity ratio h = A, between the upper 
and lower liquid for the drainage configuration. The simple rule proposed by Chi & 
Leal (1989) for 9 4 1 - h % 1 dimpling drainage, h - 1 uniform thickness, h < 1 
uniform drainage - appears to be generally applicable also for finite but still modest 
Reynolds numbers. But obviously the other governing parameters are also important 
for the film shape. 

We have not paid very much attention on the tailing mode, because of its relative 
rarity compared to  film drainage, but two interesting phenomena are observed in this 
case: (i) a surface wave is observed a t  about the time of the full penetration of the 
particle across the initial position of the liquid-liquid interfacc ; (i i)  a ring dimpling 
develops a t  the drop front in the tailing phase for a tail length of several particle 
diameters. 

Finally, we performed an experiment showing appearance of bubble instability in 
the particle-interface interaction. It takes place a t  relatively large Reynolds and 
Eotvos numbers (93 - 100, d - 25). 

We thank Professor Z. D. Zapryanov for having suggested the study of this 
problem and for providing continuous encouragement in the process of work. The 
authors wish to  thank also Professor R. D. Lazarov as well as the referees of the 
paper for their helpful comments on the manuscript. This work was supported by 
Grant 55-26-3-1987 and Grant 623 of the Bulgarian Ministry of Science and Higher 
Education. 
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